Compute estimate table for log-log regression
Arguments
- fit
lm
model object for the log-log regression- method
character string specifying the distribution to be used to derived the confidence interval. Options are "normal" (default) and "tdist"
- ci
confidence interval to be calculated. Options are 0.95 (default) and 0.90
- sigdigits
number of significant digits for rounding
Examples
mod_auc <- mod_loglog(dplyr::filter(data_sad_nca, PPTESTCD == "aucinf.obs"))
df_loglog(mod_auc)
#> Intercept StandardError CI Power LCL UCL Proportional
#> 1 4.04 0.0663 95% 0.997 0.867 1.13 TRUE
#> PowerCI Interpretation
#> 1 Power: 0.997 (95% CI 0.867-1.13) Dose-proportional
mod_cmax <- mod_loglog(dplyr::filter(data_sad_nca, PPTESTCD == "cmax"))
df_loglog(mod_cmax)
#> Intercept StandardError CI Power LCL UCL Proportional
#> 1 1.09 0.0616 95% 1.07 0.947 1.19 TRUE
#> PowerCI Interpretation
#> 1 Power: 1.07 (95% CI 0.947-1.19) Dose-proportional