Perform a log-log Regression
Arguments
- data
Input dataset for log-log regression. Default expected format is output from
PKNCA::pk.nca()
(i.e., SDTM PP formatting)- exp_var
Character string specifying the variable in
data
containing the exposure metric (dependent variable) Default is "PPORRES".- dose_var
Character string specifying the variable in
data
containing the dose (independent variable) Default is "DOSE".
Examples
mod_auc <- mod_loglog(dplyr::filter(data_sad_nca, PPTESTCD == "aucinf.obs"))
summary(mod_auc)
#>
#> Call:
#> stats::lm(formula = form, data = data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.80124 -0.29492 -0.03507 0.14386 1.24984
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.04173 0.30499 13.25 5.5e-15 ***
#> log(DOSE) 0.99657 0.06629 15.03 < 2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4606 on 34 degrees of freedom
#> Multiple R-squared: 0.8692, Adjusted R-squared: 0.8654
#> F-statistic: 226 on 1 and 34 DF, p-value: < 2.2e-16
#>
mod_cmax <- mod_loglog(dplyr::filter(data_sad_nca, PPTESTCD == "cmax"))
summary(mod_cmax)
#>
#> Call:
#> stats::lm(formula = form, data = data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.95350 -0.31769 0.00194 0.26984 0.98285
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.0917 0.2834 3.852 0.000494 ***
#> log(DOSE) 1.0680 0.0616 17.337 < 2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.428 on 34 degrees of freedom
#> Multiple R-squared: 0.8984, Adjusted R-squared: 0.8954
#> F-statistic: 300.6 on 1 and 34 DF, p-value: < 2.2e-16
#>