Compute and tabulate estimates for log-log regression
Usage
df_doseprop(
data,
metrics,
metric_var = "PPTESTCD",
exp_var = "PPORRES",
dose_var = "DOSE",
method = "normal",
ci = 0.95,
sigdigits = 3
)
Arguments
- data
Input dataset for log-log regression. Default expected format is output from
PKNCA::pk.nca()
(i.e., SDTM PP formatting)- metrics
character vector of exposure metrics in
data
to plot- metric_var
character string of variable in
data
containing the values provided inmetrics
. Default is "PPTESTCD".- exp_var
Character string specifying the variable in
data
containing the exposure metric (dependent variable) Default is "PPORRES".- dose_var
Character string specifying the variable in
data
containing the dose (independent variable) Default is "DOSE".- method
character string specifying the distribution to be used to derived the confidence interval. Options are "normal" (default) and "tdist"
- ci
confidence interval to be calculated. Options are 0.95 (default) and 0.90
- sigdigits
number of significant digits for rounding
Examples
df_doseprop(data_sad_nca, metrics = c("aucinf.obs", "cmax"))
#> Intercept StandardError CI Power LCL UCL Proportional
#> 1 4.04 0.0663 95% 0.997 0.867 1.13 TRUE
#> 2 1.09 0.0616 95% 1.070 0.947 1.19 TRUE
#> PowerCI Interpretation PPTESTCD
#> 1 Power: 0.997 (95% CI 0.867-1.13) Dose-proportional aucinf.obs
#> 2 Power: 1.07 (95% CI 0.947-1.19) Dose-proportional cmax