Skip to contents

Compute and tabulate estimates for log-log regression

Usage

df_doseprop(
  data,
  metrics,
  metric_var = "PPTESTCD",
  exp_var = "PPORRES",
  dose_var = "DOSE",
  method = "normal",
  ci = 0.95,
  sigdigits = 3
)

Arguments

data

Input dataset for log-log regression. Default expected format is output from PKNCA::pk.nca() (i.e., SDTM PP formatting)

metrics

character vector of exposure metrics in data to plot

metric_var

character string of variable in data containing the values provided in metrics. Default is "PPTESTCD".

exp_var

Character string specifying the variable in data containing the exposure metric (dependent variable) Default is "PPORRES".

dose_var

Character string specifying the variable in data containing the dose (independent variable) Default is "DOSE".

method

character string specifying the distribution to be used to derived the confidence interval. Options are "normal" (default) and "tdist"

ci

confidence interval to be calculated. Options are 0.95 (default) and 0.90

sigdigits

number of significant digits for rounding

Value

data.frame

Examples

df_doseprop(data_sad_nca, metrics = c("aucinf.obs", "cmax"))
#>   Intercept StandardError  CI Power   LCL  UCL Proportional
#> 1      4.04        0.0663 95% 0.997 0.867 1.13         TRUE
#> 2      1.09        0.0616 95% 1.070 0.947 1.19         TRUE
#>                            PowerCI    Interpretation   PPTESTCD
#> 1 Power: 0.997 (95% CI 0.867-1.13) Dose-proportional aucinf.obs
#> 2  Power: 1.07 (95% CI 0.947-1.19) Dose-proportional       cmax