The goal of pmxhelpr is to make pharmacometrics workflows more standardized, efficient, and reproducible. This package provides helper and wrapper functions for common steps in the pharmacometrics analysis workflow, such as exploratory data analysis, model development, model evaluation, and model application.
Installation
You can install the development version of pmxhelpr from GitHub with:
# install.packages("devtools")
devtools::install_github("ryancrass/pmxhelpr")
Function Naming Conventions
Functions in this package use the following naming conventions:
- Wrapper functions: ReturnObject_WrappedFunction_Purpose
-
model_mread_load()
wrapsmrgsolve::mread_cache()
to read internal package model files returning anmrgmod
object. -
df_mrgsim_addpred()
wrapsmrgsolve::mrgsim()
includingmrgsolve::zero_re()
to add population predictions (PRED) to the input data returning adata.frame
. -
df_mrgsim_replicate()
wrapsmrgsolve::mrgsim()
to replicate the input data returning adata.frame
. -
plot_vpc_exactbins()
wrapsvpc::vpc()
to generate a VPC plot using exact time bins returning aggplot
object.
-
- Helper functions: ReturnObject_Purpose
-
plot_dvtime
returns aggplot
object with a dependent variable plotted versus time -
df_nobsbin
returns a summarydata.frame
with counts of the number of missing and non-missing observations per bin. -
df_pcdv
returns adata.frame
containing the prediction-corrected dependent variable. -
plot_legend
returns aggplot
object containing a legend for a VPC plot generated usingplot_vpc_exactbins
-
Example Visual Predictive Check Workflow
This is a basic example which illustrates a simple VPC workflow using pmxhelpr:
library(pmxhelpr)
library(dplyr)
library(ggplot2)
library(mrgsolve)
library(vpc)
library(patchwork)
library(withr)
#Read internal analysis-ready dataset for an example Phase 1 study
glimpse(data_sad)
#Plot data
data <- data_sad
mutate(Dose = paste(DOSE, "mg"),
Dose_f = factor(Dose, levels = c("10 mg", "50 mg", "100 mg", "200 mg", "400 mg")))
plot_dvtime(data = data, dv_var = c(DV = "ODV"), cent = "median", col_var = "Dose_f",
ylab = "Concentration (ng/mL)", timeu = "hours")
#Read internal mrgsolve model file
model <- model_mread_load("model")
#Simulated replicates of the dataset using mrgsim
simout <- df_mrgsim_replicate(data = data, model = model,replicates = 100,
output_vars = c(DV = "ODV"),
num_vars = c("CMT", "LLOQ", "EVID", "MDV", "WTBL", "FOOD"),
char_vars = c("USUBJID", "PART", "Dose_f))
glimpse(simout)
#Plot output in a Prediction-corrected Visual Predictive Check (VPC)
#Exact nominal time bins present in data_sad ("NTIME") are used to plot summary statistics
#Actual time ("TIME") is used to plot observed data points, which are also prediction-corrected if pcvpc=TRUE
#LLOQ in the dataset is 1 ng/mL
plot_obj_food <- plot_vpc_exactbins(
sim = mutate(simout, FOOD_f = factor(FOOD, levels = c(0,1), labels = c("Fasted", "Fed"))),
strat_vars = "FOOD_f",
pcvpc = TRUE,
loq = 1
) +
scale_y_log10(guide = "axis_logticks")
plot_obj_food
#Add Legend
plot_obj_leg <- plot_legend()
plot_obj_leg
plot_obj_food_wleg <- plot_obj_food + plot_obj_leg + plot_layout(heights = c(2,1))
plot_obj_food_wleg